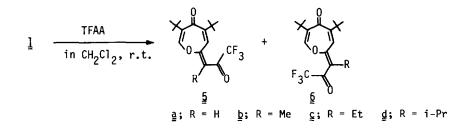

Tetrahedron Letters Vol. 21, pp 1269 - 1272 © Pergamon Press Ltd. 1980. Printed in Great Britain

REACTION OF PEROXY-<u>p</u>-QUINOL ACETATES WITH TRIFLUOROACETIC ANHYDRIDE. FORMATION OF NEW OXEPINONE DERIVATIVES.¹


A. Nishinaga,* K. Nakamura, and T. Matsuura Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan

The reaction of peroxy-<u>p</u>-quinol acetates derived from 4-R-2, $6-di-\underline{t}-butylphenols$ (R = Me, Et, n-Pr, s-Bu) with trifluoroacetic anhydride gives the corresponding 2-trifluoroacetylmethylidene-5-oxepinone derivatives. A favoured mechanism involves efficient conversion of a quinoxy cation intermediate primarily formed into an oxepinone derivative to which a trifluoroacetyl group is incorporated.

The acid- and base-catalyzed reactions of peroxy esters derived from 4-substituted 2,6-di-<u>t</u>-butylphenols have provided new findings in the organic peroxide chemistry.²⁻⁴ The trifluoroacetic acid-catalyzed reaction of peroxy-<u>p</u>-quinol acetates (<u>1</u>), easily available from the oxygenation of 4-alkyl-2,6-di-<u>t</u>-butylphenols followed by acetylation, has been shown to give 4-oxa-2-pentenone derivatives (<u>4</u>).⁴ An oxepinium cation intermediate (<u>3</u>) resulting from the ring expansion of the quinoxy cation (<u>2</u>) primarily formed has been postulated for this reaction.

It is now found that oxepinone derivatives of type $\frac{5}{2}$ are actually formed in good yield when the peroxy acetates $\underline{1}\underline{a}$ - \underline{d} are treated with trifluoroacetic anhydride, providing a new oxepinone system. The treatment of <u>la</u> with trifluoroacetic anhydride (TFAA) in CH_2Cl_2 at room temperature for 24 h gave a mixture of oxepinone derivatives in which a trifluoroacetyl group is incorporated, <u>5a</u>,⁵ mp 65-66 °C (71% yield) and its geometrical isomer <u>6a</u>; liquid (29% yield), which were isolated by TLC. The analytical and spectral data of these products (Table 1) are in good agreement with the structures. The compound <u>6a</u> is exclusively converted into <u>5a</u> by heating, indicating

that 5a is a stable form. The instability of 6a is probably due to an electronic repulsion between the CF₃CO group and the lone pair electrons of ring oxygen. The reduction of 5a and/or a mixture of 5a and 6a with Zn/HCl in ethanol gave 2,6-di-t-butyl-4-trifluoroacetylmethylphenol (7^{5})

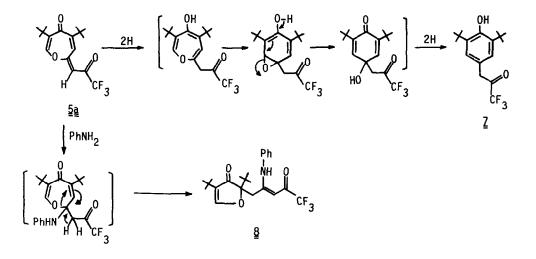
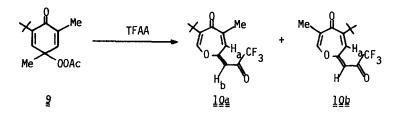

Table 1. H WMR Data of the Oxepinone Derivatives 5, 6 and 10.					
Oxepinone	<u>t</u> -Bu	t-Bu	R	0=C-C=C-H	C=CH-0-
<u>5a</u>	1.26	1.35	6.05	7.79	6.73
<u>6a</u>	1.25	1.30	5.82	- 6.32	6.82
5 <u>5</u>	1.26	1.30	2.06 ^b	7.30 ^C	6.86
<u>5</u> <u>c</u>	1.24	1.28	0.94(t) ^d ,2.41(q		6.86
<u>6</u>	1.24	1.28	0.97(t) ^d ,2.52(q		6.78
<u>5</u> d	1.20	1.27	1.15(d) ^d ,2.76(s		6.54
6 <u>d</u>	1.18	1.23	1.20(d) ^d ,3.01(s	ep) ^d 6.60	6.49
<u>10a</u>	1.44	2.35 ^e	6.21 ^f	7.83 ^g	6.84(s)
10b	1.53	2.03 ^h	6.26 ^f	7.88 ¹	6.74(q) ^j

Table 1. ¹H NMR Data of the Oxepinone Derivatives 5, 6 and 10.^a

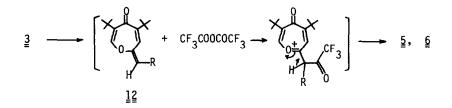
^a The assignment is confirmed by decoupling technique with 10. ^b A doublet $(J_{H-H}^{=} 0.9 \text{ Hz})$ of quartets $(J_{H-F}^{=}2 \text{ Hz})$. ^c q; J=0.9 Hz. ^d Chemical shift values are tentatively assigned. ^e Me group: d,d; $J_{Me-H_a}^{=}=1.4 \text{ Hz}$, $J_{Me-H_b}^{=}=0.4 \text{ Hz}$. ^f multi. ^g A broad q; $J_{Me-H_a}^{=}=1.4 \text{ Hz}$. ^h Me group: d; J=1.4 Hz. ⁱ A broad s. ^j J=1.4 Hz.

resulting quantitatively from a two-step reduction. A favoured mechanism involves conversion of the first reduction product, an oxepin analogue, into an arene oxide⁶ which isomerizes to a quinol followed by further reduction to the phenol.⁷ When $\frac{5}{2}$ (1 mmol) was heated with aniline (2

mmol) in dioxane (10 ml) under reflux for 4 h, the compound $\frac{8}{8}$, a ring contracted product in which aniline is incorporated, was obtained in quantitative yield. This is analogous to the formation of $\frac{4}{2}$ from $\frac{1}{2}$. The structures $\frac{5a}{2}$ and $\frac{8}{2}$ are confirmed by X-ray crystallographic analyses.⁹



The reaction of <u>lb</u>-<u>d</u> with TFAA similarly gave the corresponding oxepinone derivatives $\frac{5}{2}$ and $\frac{6}{2}$, whose ¹H NMR data are given in Table 1. The products in these cases were separated by TLC and purified by distillation. From <u>1b</u> only the stable isomer $\frac{5b}{2}^{5}$ (yellow liquid, 120-121 °C/1 mmHg) was obtained in 78% yield, whereas <u>lc</u> and <u>ld</u> gave nearly 1 : 1 mixtures of the corresponding $\frac{5}{2}$ and $\frac{6}{2}$.¹⁰ The fact that the products from <u>lc</u> and <u>ld</u> are not converted into a single component by heating indicates that the steric character of the groups R and COCF₃ in <u>5c</u>-<u>d</u> and <u>6c</u>-<u>d</u> is similar to each other.


The reaction of $\underline{9}$ with TFAA at room temperature followed by distillation of the products gave a 1 : 1 mixture of $\underline{10a}$ and $\underline{10b}$ (yellow liquid, 100 °C/1 mmHg, 60% yield), which provides conclusive informations for the assignment of ¹H NMR data of the present oxepinone derivatives.

The peroxy acetates \underline{l} (R = \underline{t} -Bu, \underline{i} -Pr, PhCH₂), upon treating with TFAA, gave only 2,6-di-tbutyl-<u>p</u>-benzoquinone (\underline{ll}), the results being the same as those in the reaction of these acetates with trifluoroacetic acid (TFA).⁴ With \underline{l} (R = PhCH₂) benzyl trifluoroacetate was isolated quantitatively along with \underline{ll} . It may be, therefore, concluded that the reaction of \underline{l} with TFAA is catalyzed by TFA formed in situ and involves the quinoxy cation intermediate $\underline{2}$.

The mechanism by which the COCF_3 group is incorporated into the products should involve a

nucleophilic attack by the enol ether part in the oxepinone $\underline{12}$ on the carbonyl group of TFAA. Analogous nucleophilic reactions of enol ethers have been reported.¹¹

References and Notes

- (1) Peroxy Esters. V. Part IV, Ref. 2c; Part III, Ref. 4.
- (2) (a) A. Nishinaga, K. Nakamura, and T. Matsuura, Chem. Lett., 303 (1977); (b) Tetrahedron Lett., 3557 (1978); (c) ibid., 2165 (1979).
- (3) A. Nishinaga, K. Nakamura, T. Matsuura, A. Rieker, and D. Koch, Tetrahedron Lett., 3597 (1978).
- (4) A. Nishinaga, K. Nakamura, T. Matsuura, A. Rieker, D. Koch, and R. Griesshammer, Tetrahedron, <u>35</u>, 2493 (1979).
- (5) $\underline{5a}$: C, \pm 0.1%; H, \pm 0.02%; F, \pm 0.08 %. 7: bp, 106-108 °C/1.5 mmHg; IR(Nujol), 3665 (OH), 1765 (CO) cm⁻¹; ¹H NMR(CDCl₃) δ 1.44 (s, 18 H, \underline{t} -Bu), 3.90 (s, 2 H, CH₂), 5.19 (s, 1 H, OH), 6.95 (s, 2 H, ArH). $\underline{5b}$: C, \pm 0.3%; H, \pm 0.2%; F, \pm 0.2%.
- (6) E. Vogel and H. Gunther, Angew. CHem., 79, 429 (1967).
- (7) A. Rieker and K. Scheffler, Liebigs Ann. Chem., 689, 78 (1963).
- (8) Colorless prisms; mp, 125-126 °C; IR(Nujol) 3100 (NH), 1710 (CO) cm⁻¹; ¹H NMR(CDC1₃) δ 0.75 (s, <u>t</u>-Bu), 1.17 (s, <u>t</u>-Bu), 2.95 (q, CH₂, J = 13 Hz), 5.38 (s, C=CH), 7.03-7.5 (Ar), 7.83 (s, C=CH-O-).
- (9) A. Nishinaga, K. Nakamura, K. Hirotsu, and T. Matsuura, to be published.
- (10) The TLC separation of the products from lc gave a 1 : 1 mixture of 5c and 6c (61% yield) and the benzoquinone ll (11% yield) and from ld a 1 : 1 mixture of 5d and 6d (41% yield) and ll (4% yield). For purification the mixture of 5c and 6c was distilled at 115 °C/3 mmHg and of 5d and 6d at 115 °C/3 mmHg. Attempts to isolate each component from the mixtures of 5c-d and 6c-d were not successful but the structures of these products are clearly distinguishable from their characteristic NMR signals.
- (11) G. D. Grosby and R. V. Berthold, J. Org. Chem., <u>27</u>, 3083 (1963).